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Abstract

ChaLearn is organizing the Automatic Machine Learning (AutoML) contest 2015, which
challenges participants to solve classi�cation and regression problems without any human

intervention. Participants' code is automatically run on the contest servers to train and
test learning machines. However, there is no obligation to submit code; half of the prizes
can be won by submitting prediction results only. Datasets of progressively increasing
di�culty are introduced throughout the six rounds of the challenge. (Participants can
enter the competition in any round.) The rounds alternate phases in which learners are
tested on datasets participants have not seen (AutoML), and phases in which participants
have limited time to tweak their algorithms on those datasets to improve performance
(Tweakathon). This challenge will push the state of the art in fully automatic machine
learning on a wide range of real-world problems. The platform will remain available beyond
the termination of the challenge: http://codalab.org/AutoML.
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1. Introduction

The AutoML Challenge is designed to promote research on reducing or removing the need
for human interaction in applying machine learning (ML) to practical problems. This refers
to all aspects of automating the ML process beyond model selection, hyper-parameter op-
timization, and model search. Automation is desired for data loading and formatting,
detection and handling of skewed data and missing values, selection of learning represen-
tation and feature extraction, matching algorithms to problems, acquisition of new data
(active learning), creation of appropriately sized and strati�ed training, validation, and test
sets, selection of algorithms that satisfy resource constraints at training and run time, the
ability to generate and reuse workows, meta-learning and learning transfer, and explicative
reports. Such automation is crucial for both robots and lifelong autonomous ML.

In Guyon et al. (2015) we describe the details of the design of the AutoML challenge1

as part of the o�cial IJCNN 2015 competition program. Milestone and �nal results will
be discussed at various workshops, including at the ICML 2015 AutoML workshop. This
challenge advances the theoretical underpinnings of model selection by treating it as a joint
problem of optimization and statistics. It provides a novel framework for numerical exper-
imentation that reduces user intervention and allows practitioners to evaluate approaches
on a large set of problems. In this paper we report some �rst results from this year's
competition.

The new addition of this year's competition is code submission by participants for au-
tomatic execution on the open-source platform Codalab2. This ensures (1) no human inter-
vention and (2) fair competition since all learning machines (also referred to as learners) are
trained and tested on datasets unknown to participants using the same resources. However,
there is no obligation to submit code; half of the prizes can be won by submitting predic-
tion results alone. There are six rounds (Prep, Novice, Intermediate, Advanced, Expert,
and Master) in which datasets of progressive di�culty are introduced, �ve per round. The
rounds alternate AutoML phases in which submitted code is tested on the Codalab platform
with new datasets and Tweakathon phases in which participants improve their methods by
tweaking them on those same datasets. During Tweakathon phases participants are free to
use their own computational resources.

2. Challenge Design

This challenge focuses on supervised learning in ML and, in particular, solving classi�cation
and regression problems, without any further human intervention, within given constraints.
To this end, we are releasing 30 datasets3 pre-formatted in given feature representations (i.e.,
each example consists of a �xed number of numerical coe�cients). Data present themselves
as input-output pairs that are identically and independently distributed. The models used
are limited to �xed-length vectorial representations. Hence, we do not incorporate problems
of time series prediction. Text, speech, and video processing tasks included in the challenge
are not presented in their native data representations; datasets have been preprocessed

1. http://codalab.org/AutoML
2. codalab.org
3. The nature of the data will remain con�dential until the challenge is over.
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in suitable �xed-length vectorial representations. The di�culty of the challenge lies on
the data complexity (class imbalance, sparsity, missing values, categorical variables). The
testbed is composed of data from a wide variety of domains.

Although there exist ML toolkits that can tackle all these problems, it still requires
considerable human e�ort to �nd, for a given dataset, task, evaluation metric, and available
computational time, the methods and hyper-parameter settings that maximize performance.
The participant's challenge is to create the perfect black box that removes human interaction.

2.1. Tasks

This challenge is concerned with regression and binary, multi-class, and multi-label classi-
�cation problems from data formatted in �xed-length feature-vector representations. Each
task is associated with a dataset coming from a real application. The domains of applica-
tion are drawn from biology and medicine, ecology, energy and sustainability management,
image, text, audio, speech, video and other sensor data processing, Internet social media
management and advertising, market analysis and �nancial prediction. All datasets present
themselves in the form of data matrices with examples in rows and features in columns. The
goal is to predict a target value. For instance, in a medical dataset, examples may represent
patient records and features may represent results of laboratory analyses; the goal may be
to predict the diagnosis of the patient (positive or negative). The identity and description
of the datasets is concealed (except in round 0) to avoid the use of domain knowledge and
to push participants to design fully automated ML solutions. In addition, the tasks are
constrained by a time budget and a scoring metric.

2.2. Time Budget

The Codalab platform provides computational resources shared by all participants. To
ensure fairness, when a code submission is evaluated, its execution time is limited to a
given time budget, which varies from dataset to dataset. The time budget is provided with
each dataset in its info �le. The organizers reserve the right to adjust the time budget by
supplying participants with updated info �les. Participants who submit results|instead of
code|are not constrained by the time budget since their code is run on their own platform.
This may be advantageous for entries counting towards the Final phases (immediately
following a Tweakathon). Participants wishing to also enter the AutoML phases, which
require submitting code, can submit both results and code (simultaneously). The results
do not need to be produced by the submitted code; if a participant does not want to share
personal code, he/she can submit the sample code provided by the organizers together with
his/her results.

2.3. Scoring Metrics

The score is computed by comparing submitted predictions to reference target values. For
each sample i; i = 1 : P (where P is the size of the validation set or of the test set), the
target value is a continuous numeric coe�cient yi for regression problems, a binary indicator
in f0; 1g for two-class problems, or a vector of binary indicators [yil] in f0; 1g for multi-class
or multi-label classi�cation problems (one per class l). Participants must submit prediction
values matching as closely as possible the target value, in the form of a continuous numeric
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coe�cient qi for regression problems and a vector of numeric coe�cients [qil] in the range
[0; 1] for multi-class or multi-label classi�cation problems (one per class l).

The starting kit contains an implementation in Python of all scoring metrics used to
evaluate the entries. Each dataset has its own scoring criterion speci�ed in its info �le. All
scores are normalized such that the expected value of the score for a random prediction,
based on class prior probabilities, is 0 and the optimal score is 1. Multi-label problems are
treated as multiple binary classi�cation problems and are evaluated using the average of
the scores of each binary classi�cation subproblem.

We �rst de�ne the notation h�i for the average over all samples P indexed by i. That is,

hyii = (1=P )
X

i

(yi): (1)

The score metrics are described in the followings.
R2. The coe�cient of determination is used for regression problems only. The metric is
based on the mean squared error (MSE) and the variance (VAR), and computed as

R2 = 1�MSE=VAR; (2)

where MSE = h(yi � qi)
2i and VAR = h(yi �m)2i, with m = hyii.

ABS. This coe�cient is similar to R2 but based on the mean absolute error (MAE) and
the mean absolute deviation (MAD), and computed as

ABS = 1�MAE=MAD ; (3)

where MAE = habs(yi � qi)i and MAD = habs(yi �m)i:

BAC. Balanced accuracy is the average of class-wise accuracy for classi�cation problems|
and the average of sensitivity (true positive rate) and speci�city (true negative rate) for
binary classi�cation. For binary classi�cation problems, the class-wise accuracy is the frac-
tion of correct class predictions when qi is thresholded at 0.5, for each class. For multi-label
problems, the class-wise accuracy is averaged over all classes. For multi-class problems, the
predictions are binarized by selecting the class with maximum prediction value argmaxl qil
before computing the class-wise accuracy.

We normalize the metric as follows.

jBAC j = (BAC �R)=(1�R); (4)

where R is the expected value of BAC for random predictions (i.e., R = 0:5 for binary
classi�cation and R = (1=C) for C-class problems).

AUC. The area under the ROC curve is used for ranking and binary classi�cation problems.
The ROC curve is the curve of sensitivity vs. 1-speci�city at various prediction thresholds.
The AUC and BAC values are the same for binary predictions. The AUC is calculated for
each class separately before averaging over all classes. We normalize the metric as

jAUCj = 2AUC � 1: (5)

4



AutoML Challenge 2015

F1 score. The harmonic mean of precision and recall is computed as

F1 = 2 � (precision � recall)=(precision + recall); (6)

precision = true positive=(true positive + false positive) (7)

recall = true positive=(true positive + false negative) (8)

Prediction thresholding and class averaging is handled similarly as in BAC. We normalize
the metric as follows.

jF1j = (F1�R)=(1�R); (9)

where R is the expected value of F1 for random predictions (see BAC).

PAC. Probabilistic accuracy is based on the cross-entropy (or log loss) and computed as

PAC = exp(�CE ); (10)

CE =

8><
>:

average
P

l
log(qil); for multi-class

�hyi log(qi);

+(1� yi) log(1� qi)i; for binary and multi-label

(11)

Class averaging is performed after taking the exponential in the multi-label case. We
normalize the metric as follows.

jPAC j = (PAC �R)=(1�R); (12)

where R is the score obtained using qi = hyii or qil = hyili (i.e., using as predictions the
fraction of positive class examples, as an estimate of the prior probability).

Note that the normalization of R2, ABS, and PAC uses the average target value qi = hyii
or qil = hyili. In contrast, the normalization of BAC, AUC, and F1 uses a random prediction
of one of the classes with uniform probability.

Only R2 and ABS are meaningful for regression; we compute the other metrics for
completeness by replacing the target values with binary values after thresholding them in
the mid-range.

2.4. Leaderboard Score Calculation

Participants (or their submitted code) provide prediction results for the withheld target
values for all datasets in each round. The scoring program supplied by the organizers is run
on the server to compute the scores. For each dataset, participants are ranked in decreasing
order of performance|based on the scoring metric associated with the given task. The
overall score is computed by averaging the rank obtained on every dataset and shown on
the leaderboard in column hranki.

The results of the last submission are used to compute the leaderboard results. There-
fore, participants must resubmit older entries if they want them to be counted as �nal. In
phases marked with a [+], participants with the three smallest hranki are eligible for prizes
(subject to compliance with the Terms and Conditions).

5



Guyon et al.

Table 1: Phases of round n. For each dataset, one labeled training set is provided and two
unlabeled sets (validation set and test set) are provided for testing.

Phase in Goal Duration Submissions Data Leader- Prizes
round [n] board

scores
[+] AutoML[n] Blind Short NONE New datasets, Test Yes

test (code not set
of code migrated) downloadable results

Tweakathon[n] Manual Months Code and/ Datasets Validation No
tweaking or results downloadable set results

[+] Final[n] Results of Short NONE NA Test Yes
Tweakathon (results set
revealed migrated) results

2.5. Estimation of Performance on Future Data

In the Performance Prediction Challenge (Guyon et al., 2006) participants had to both
design models that generalized well on future data and predict their performance. This is
a fundamental aspect of the AutoML �eld. However, the challenge does not address this
issue to limit the complexity of design and evaluation.

Along with the learning curves as a function of time spent searching for the best hyper-
model, we could draw learning curves as a function of the number of training examples.
Such curves are useful in evaluating whether having more training examples signi�cantly
improves performance. This may be part of the post-challenge analysis.

2.6. Rounds and Phases

The challenge is run in multiple phases grouped in six rounds. Round 0 (Preparation)
is a practice round with publicly available datasets which is followed by �ve rounds of
progressive di�culty (Novice, Intermediate, Advanced, Expert, and Master). Except for
rounds 0 and 5, all rounds include three phases that alternate AutoML and Tweakathons
contests. These phases are described in Table 1.

Submissions are made in Tweakathon phases only. The results of the latest submission
are shown on the leaderboard and such submission automatically migrates to the next
phase. Submitting code makes it possible to participate in subsequent phases without new
submissions. However, participating in previous rounds is not a prerequisite for entering
new rounds. Prizes are awarded in phases marked with a [+] during which there is no
submission.

2.7. Code vs. Result Submission

To participate in phase AutoML[n], code must be submitted in Tweakathon[n-1]. To par-
ticipate in the Final[n], code or results must be submitted in Tweakathon[n]. If both code
and (well-formatted) results are submitted, the results are used for scoring rather than re-
running the code in Tweakathon[n] and Final[n]. The code is executed when results are
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unavailable or not well formatted. Thus, there is no disadvantage in submitting both re-
sults and code. When submitting results and code, di�erent methods can be used to enter
the Tweakathon/Final phases and the AutoML phases. Submissions are made only during
Tweakathon with a maximum of �ve submissions per day. Immediate feedback is provided
on the leaderboard on validation data. Participants rank on the basis of test performance
during the Final and AutoML phases.

3. Data

Every round consists of �ve datasets spanning a range of di�culties. Data di�culty pro-
gressively increases from round to round. Datasets may be recycled, but are reformatted
into new representations, except for the �nal round, which includes completely new data.

The datasets used in the challenge present the following range of di�culty, which requires
demanding hyper-parameter choices:

Data distributions. Di�erent intrinsic/geometrical complexity.

Tasks. Regression, binary classi�cation, multi-class classi�cation, and multi-label classi�-
cation.

Scoring metrics. See Section 2.3.

Class imbalance. Balanced vs. unbalanced class proportions.

Sparsity. Full vs. sparse matrices.

Missing values. Presence vs. absence of missing values.

Categorical variables. Presence vs. absence of categorical features.

Irrelevant variables. Presence vs. absence of additional irrelevant data.

Number of training examples (Ptr). Small vs. large number of training examples.

Number of features (N). Small vs. large number of features.

Aspect ratio of the training data matrix (Ptr=N). Ptr � N;Ptr = N , or Ptr � N .

Round 0 uses �ve datasets from previous challenges to de�ne tasks illustrating a few of
the aforementioned di�culties. The details of the datasets are given in Guyon et al. (2015).

All datasets have been pre-formatted in a �xed-length feature-based representation. In
the following rounds described below, the number of variables and samples vary between
thousands and millions.
Novice. Binary classi�cation problems only. No missing data; no categorical features;
moderate number of features (< 2; 000); balanced classes. Challenge lies in dealing with
sparse and full matrices, presence of irrelevant variables, and various Ptr=N .

Intermediate. Binary and multi-class classi�cation problems. Challenge lies in dealing
with unbalanced classes, number of classes, missing values, categorical variables, and up to
7,000 features.

Advanced. Binary, multi-class, and multi-label classi�cation problems. Challenge lies in
dealing with up to 300,000 features.

Expert. Classi�cation and regression problems. Challenge lies in dealing with the entire
range of data complexity.
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Table 2: Round 0 data: results of phase Tweakathon 0 on validation set. Rank is shown in paren-
theses for each data set. The best entry has the lowest average rank.

Participant <Rank> DS 1 DS 2 DS 3 DS 4 DS 5
ideal.intel 1.2 0.82 (2) 0.81 (1) 0.96 (1) 0.90 (1) 0.60 (1)
abhishek 3.2 0.82 (4) 0.79 (4) 0.94 (3) 0.85 (3) 0.45 (2)
aad.freiburg 3.4 0.82 (3) 0.80 (2) 0.94 (4) 0.80 (5) 0.42 (3)
reference 7.0 0.81 (8) 0.78 (5) 0.81 (8) 0.70 (8) 0.35 (6)

Table 3: Round 0 data: results of phase Final 0 on test set.
Participant <Rank> DS 1 DS 2 DS 3 DS 4 DS 5
ideal.intel.analytics 1.40 0.8262 (1) 0.8132 (2) 0.9632 (2) 0.8877 (1) 0.5894 (1)
abhishek 43.60 0.8178 (4) 0.7924 (4) 0.9394 (5) 0.8716 (2) 0.4608 (3)
aad.freiburg 4.00 0.8172 (6) 0.8107 (3) 0.9751 (1) 0.8580 (5) 0.3958 (5)
reference 18.40 0.8140 (8) 0.7759 (24) 0.8151 (13) 0.6178 (26) 0.3345 (21)

Table 4: Round 1 data: results of phase AutoML 1 on test set.
Participant <Rank> DS 1 DS 2 DS 3 DS 4 DS 5 Duration
aad.freiburg 2.80 0.5096 (1) 0.6059 (4) 0.6270 (3) 0.5802 (1) 0.8778 (5) 5988 (3)
jrl 443.80 0.4856 (2) 0.6276 (1) 0.5993 (5) 0.5292 (3) 0.8711 (8) 5987 (4)
tadej 4.20 0.4309 (9) 0.6207 (3) 0.7468 (1) 0.5549 (2) 0.8749 (6) 2728 (61)
reference 5.20 0.4568 (6) 0.5524 (8) 0.5324 (6) 0.5244 (4) 0.8934 (2) 4366 (20)

Table 5: Round 1 data: results of phase Tweakathon 1 on validation data.
Participant <Rank> DS 1 DS 2 DS 3 DS 4 DS 5
sjahandideh 2.40 0.5588 (1) 0.6958 (1) 0.8593 (1) 0.7067 (4) 0.9192 (5)
ideal.intel.analytics 2.60 0.5564 (2) 0.6844 (2) 0.8453 (5) 0.7376 (2) 0.9254 (2)
aad.freiburg 3.20 0.5276 (5) 0.6768 (3) 0.8553 (4) 0.8182 (1) 0.9251 (3)
reference 32.40 0.4628 (27) 0.5627 (29) 0.5276 (58) 0.5163 (31) 0.8895 (17)

Master. Classi�cation and regression problems of all di�culties. Challenge lies in learning
from completely new datasets.

4. Baseline Software and Preliminary Results

We provided baseline software using the ML library Scikit-learn (Pedregosa et al., 2011).
It uses ensemble methods, which improve over time by adding more base learners. Other
than the number of base learners, the default hyper-parameter settings are used.

As of June 2015, more than 300 people registered and downloaded data, and more than
60 teams are actively participating. The top ranking participants signi�cantly outperform
the reference entry in rounds 0 and 1 (see Table 2). Results on the �rst few phases that are
available as of early July are listed in Tables 3, 4, 5, and 6 respectively. The methods of
several participating teams are described in Feurer et al. (2015), Stajner (2015), and Thakur
and Krohn-Grimberghe (2015).
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Table 6: Round 1 data: results of phase Final 1 on test set.
Participant <Rank> DS 1 DS 2 DS 3 DS 4 DS 5
aad.freiburg 2.20 0.5269 (4) 0.6378 (2) 0.8457 (2) 0.7925 (1) 0.9364 (2)
ideal.intel.analytics 3.20 0.5537 (1) 0.6458 (1) 0.8130 (8) 0.7153 (3) 0.9344 (3)
asml.intel.com 4.60 0.5441 (2) 0.6310 (3) 0.8191 (6) 0.6569 (7) 0.9280 (5)
reference 34.20 0.4722 (17) 0.5524 (33) 0.5324 (63) 0.5244 (37) 0.8934 (21)

5. Discussion

Based on results of past challenges, we designed a competition where the strategy is to (1)
reduce the search space with �lter methods, (2) reduce the number of hyper-parameters
using versions of the algorithms that optimize them with embedded methods, and (3) use
an ensemble method to grow an ever improving ensemble until the computational budget
is exhausted.

A few participants asked for more computational resources. In round 0 we provided one
hour of computing per submission on an 8-core machine; we will progressively ramp up this
time up to 10 hours throughout the challenge. Future editions might run on Hadoop to
allow participants to process larger datasets and face the Big Data era.

In the post-challenge analysis, we plan to systematically test the winning entries on
these datasets semi-synthetically modi�ed to cover a wider range of problem complexity
(e.g., varying the proportion of training examples, missing data, and distractor variables).
We intend to relate the results to a set of data complexity measures proposed in Ho and
Basu (2002).
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