
A Boosting Tree Based AutoML System

with Concept Drift Adaptation

Meta_Learners:

Zheng Xiong, Jiyan Jiang, Wenpeng Zhang

Advisor: Prof. Wenwu Zhu

Department of Computer Science, Tsinghua University, Beijing

Outline

➢ Problem Statement

➢ Key Challenges

➢ System Framework

➢ Feature Engineering

➢ Concept Drift Adaptation

➢ Resource Management

Problem Statement

AutoML: the final submission

of the feedback phase is blindly

tested on 5 unseen new datasets

without human intervention

Concept drift: data comes in

stream with data distribution

changing between batches

https://www.4paradigm.com/competition/nips2018

Key Challenges

➢Feature engineering

Hard to design encoding scheme for categorical features with high cardinality

following a power-law distribution

➢Concept drift

Data distribution changing slowly over time

➢ Scalability and robustness

Hard to adapt to time budget and memory constraint on unseen test sets

The System Framework

Data

preprocessing

Feature

Engineering

Hyperparameter

optimization

Model

training

Resource ManagementMeta

features

Data

Concept Drift

Adaptation

System Controller

Feature Engineering

Encoding schemes for categorical features

➢ Encoding is essential for categorical feature representation

➢ Count encoding and target encoding provide a compact and

informative representation for categorical features with high

cardinality and power-law distribution

Feature Engineering

Encoding schemes for categorical features

Count encoding

𝒑(𝒙)
Target encoding

𝒑(𝒚|𝒙)

Pros

Computationally efficient

Automatically deal with

power-law distribution

More informative than

count encoding

Cons
Easy to overfit

Sensitive to concept drift

Concept Drift Adaptation

Drift-adaptive training scheme:

Retrain a boosting tree model with the last N batches for each test batch

Key points:

➢ Retraining vs. incremental learning

➢ Sliding window on training batches

Objective: consistent representation of the training set and test set

Concept Drift Adaptation

Concept drift in categorical features

➢ Many unseen new categories may appear

in the test batch

➢ The frequency of existing categories may

change significantly between batches

Propose a streaming co-encoding method,

o

c

c

u

r

r

e

n

c

e

f

r

e

q

u

e

n

c

y

making the feature representation consistent between training set and test set

Concept Drift Adaptation

What is the best strategy to encode categorical features?

Encoding Strategy Problem

X_train = encoder.fit_transform(X_train)

X_test = encoder.transform(X_test)
Can not deal with unseen categories properly

First strategy: fit the encoder on the training data and apply it to

transform both training and test data

Concept Drift Adaptation

What is the best strategy to encode categorical features?

Encoding Strategy Problem

X_train = encoder.fit_transform(X_train)

X_test = encoder.transform(X_test)
Can not deal with unseen categories properly

X_train = encoder_train.fit_transform(X_train)

X_test = encoder_test.fit_transform(X_test)

The representation of the same category may not

be consistent across batches

Second strategy: fit an encoder for training set and test set respectively

Concept Drift Adaptation

What is the best strategy to encode categorical features?

Encoding Strategy Problem

X_train = encoder.fit_transform(X_train)

X_test = encoder.transform(X_test)
Can not deal with unseen categories properly

X_train = encoder_train.fit_transform(X_train)

X_test = encoder_test.fit_transform(X_test)

The representation of the same category may not

be consistent across batches

X_train, X_test =

encoder.fit_transform([X_train, X_test])

The distribution of training test and test set may

be different

Finally, a co-encoding strategy, which merges the training set and

test data together and fit the encoder on this merged set

Resource Management

Adaptive time budget control

Key idea:

Estimate the computational cost of basic components

Adjust the configuration space according to the time budget

Empirical tunable configurations:

➢ Whether to use multi-value features or not

➢ The number of iterations for boosting tree model

Time budget control and hyperparameter tuning are jointly optimized

Resource Management

Adaptive time budget control

Key Steps:

1. Define time_budget_score for each dataset to determine whether or not to

use multi-value features

2. Estimate the upper bound for the number of iterations in boosting model and

search for the best hyperparameters on the training batch

3. Adaptively adjust the number of iterations in boosting model for each batch

based on the estimation of remaining time

Resource Management

Memory control

➢ The space complexity of the system remains constant as new test batch arrives

➢ Monitor the memory curve and conduct timely garbage collection

➢ Automatically tune some hyperparameters to constrain memory usage (e.g. the

number of multiprocessing, the number of training batches)

Summary

➢ Propose a Boosting Tree Based AutoML System with Concept Drift

Adaptation for High Cardinality Streaming Data Classification

➢ Our system’s key functions consist of Feature Engineering, Concept Drift

Adaptation, and Resource Management for both time and memory constraints

➢ Future work: although our system is able to generate a consistent feature

representation of training set and test set between different batches, the feature

distribution may still vary due to concept drift. It remains future work to

explore a better encoding strategy to address this problem.

Thank You!

xiongz17@mails.tsinghua.edu.cn

jiangjy17@mails.tsinghua.edu.cn

zhangwenpeng0@gmail.com

