

A Boosting Tree Based AutoML System with Concept Drift Adaptation

Meta_Learners:

Zheng Xiong, Jiyan Jiang, Wenpeng Zhang

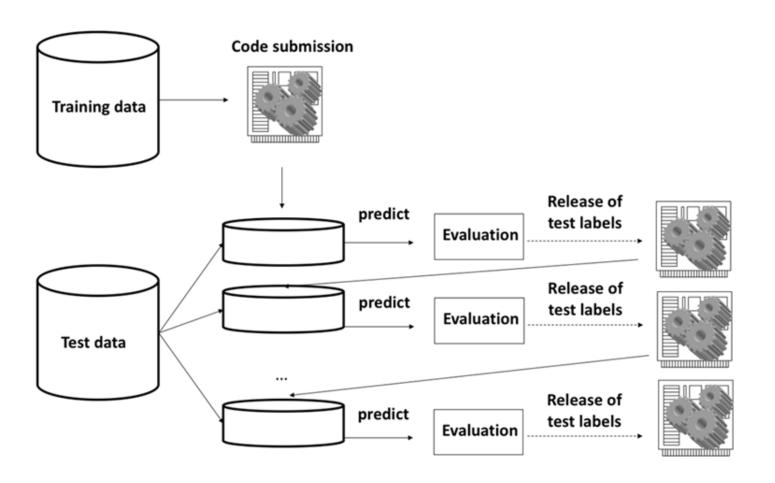
Advisor: Prof. Wenwu Zhu

Department of Computer Science, Tsinghua University, Beijing

Outline

- > Problem Statement
- > Key Challenges
- > System Framework
- > Feature Engineering
- ➤ Concept Drift Adaptation
- > Resource Management

Problem Statement



AutoML: the final submission of the feedback phase is blindly tested on 5 unseen new datasets without human intervention

Concept drift: data comes in stream with data distribution changing between batches

https://www.4paradigm.com/competition/nips2018

Key Challenges

> Feature engineering

Hard to design encoding scheme for categorical features with high cardinality following a power-law distribution

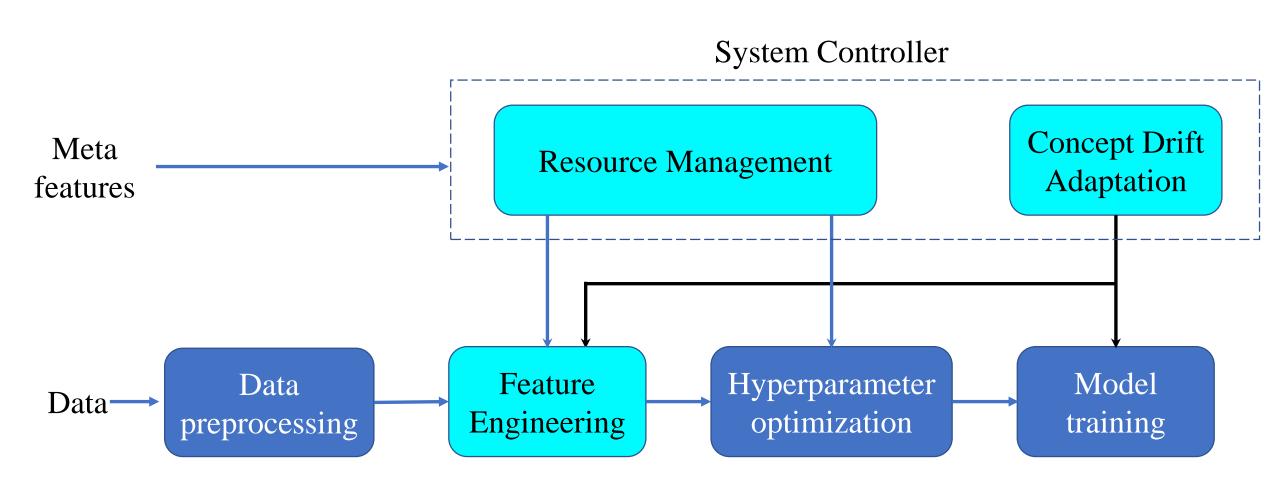
> Concept drift

Data distribution changing slowly over time

> Scalability and robustness

Hard to adapt to time budget and memory constraint on unseen test sets

The System Framework



Feature Engineering

Encoding schemes for categorical features

> Encoding is essential for categorical feature representation

Count encoding and target encoding provide a compact and informative representation for categorical features with high cardinality and power-law distribution

Feature Engineering

Encoding schemes for categorical features

	Count encoding $p(x)$	Target encoding $p(y x)$
Pros	Computationally efficient Automatically deal with power-law distribution	More informative than count encoding
Cons		Easy to overfit Sensitive to concept drift

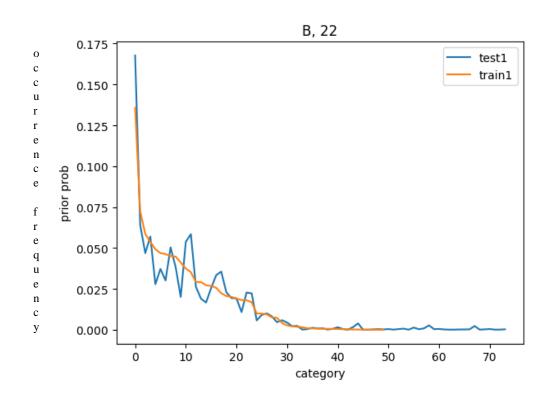
Objective: consistent representation of the training set and test set

Drift-adaptive training scheme:

Retrain a boosting tree model with the last N batches for each test batch

Key points:

- > Retraining vs. incremental learning
- > Sliding window on training batches



Concept drift in categorical features

- ➤ Many unseen new categories may appear in the test batch
- ➤ The frequency of existing categories may change significantly between batches

Propose a streaming co-encoding method, making the feature representation consistent between training set and test set

What is the best strategy to encode categorical features?

First strategy: fit the encoder on the training data and apply it to transform both training and test data

Encoding Strategy	Problem	
X_train = encoder.fit_transform(X_train)		
$X_{test} = encoder.transform(X_{test})$	Can not deal with unseen categories properly	

What is the best strategy to encode categorical features?

Second strategy: fit an encoder for training set and test set respectively

Encoding Strategy	Problem
<pre>X_train = encoder.fit_transform(X_train) X_test = encoder.transform(X_test)</pre>	Can not deal with unseen categories properly
<pre>X_train = encoder_train.fit_transform(X_train) X_test = encoder_test.fit_transform(X_test)</pre>	The representation of the same category may not be consistent across batches

What is the best strategy to encode categorical features?

Finally, a co-encoding strategy, which merges the training set and test data together and fit the encoder on this merged set

Encoding Strategy	Problem
<pre>X_train = encoder.fit_transform(X_train) X_test = encoder.transform(X_test)</pre>	Can not deal with unseen categories properly
<pre>X_train = encoder_train.fit_transform(X_train) X_test = encoder_test.fit_transform(X_test)</pre>	The representation of the same category may not be consistent across batches
X_train, X_test = encoder.fit_transform([X_train, X_test])	The distribution of training test and test set may be different

Resource Management

Adaptive time budget control

Key idea:

Estimate the computational cost of basic components

Adjust the configuration space according to the time budget

Empirical tunable configurations:

- ➤ Whether to use multi-value features or not
- The number of iterations for boosting tree model

Time budget control and hyperparameter tuning are jointly optimized

Resource Management

Adaptive time budget control

Key Steps:

- 1. Define time_budget_score for each dataset to determine whether or not to use multi-value features
- 2. Estimate the upper bound for the number of iterations in boosting model and search for the best hyperparameters on the training batch
- 3. Adaptively adjust the number of iterations in boosting model for each batch based on the estimation of remaining time

Resource Management

Memory control

- > The space complexity of the system remains constant as new test batch arrives
- ➤ Monitor the memory curve and conduct timely garbage collection
- Automatically tune some hyperparameters to constrain memory usage (e.g. the number of multiprocessing, the number of training batches)

Summary

- ➤ Propose a Boosting Tree Based AutoML System with Concept Drift
 Adaptation for High Cardinality Streaming Data Classification
- ➤ Our system's key functions consist of *Feature Engineering, Concept Drift*Adaptation, and Resource Management for both time and memory constraints
- Future work: although our system is able to generate a consistent feature representation of training set and test set between different batches, the feature distribution may still vary due to concept drift. It remains future work to explore a better encoding strategy to address this problem.

Thank You!

xiongz17@mails.tsinghua.edu.cn jiangjy17@mails.tsinghua.edu.cn zhangwenpeng0@gmail.com